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Abstract Low temperature at the booting stage is a serious

abiotic stress in rice, and cold tolerance is a complex trait

controlled by many quantitative trait loci (QTL). A QTL for

cold tolerance at the booting stage in cold-tolerant near-

isogenic rice line ZL1929-4 was analyzed. A total of 647

simple sequence repeat (SSR) markers distributed across

12 chromosomes were used to survey for polymorphisms

between ZL1929-4 and the cold-sensitive japonica cultivar

Towada, and nine were polymorphic. Single marker analysis

revealed that markers on chromosome 7 were associated

with cold tolerance. By interval mapping using an F2 popu-

lation from ZL1929-4 9 Towada, a QTL for cold tolerance

was detected on the long arm of chromosome 7. The QTL

explained 9 and 21% of the phenotypic variances in the F2

and F3 generations, respectively. Recombinant plants were

screened for two flanking markers, RM182 and RM1132, in

an F2 population with 2,810 plants. Two-step substitution

mapping suggested that the QTL was located in a 92-kb

interval between markers RI02905 and RM21862. This

interval was present in BAC clone AP003804. We desig-

nated the QTL as qCTB7 (quantitative trait locus for cold

tolerance at the booting stage on chromosome 7), and iden-

tified 12 putative candidate genes.

Introduction

Rice (Oryza sativa L.) is one of the three most important

food crops in the world. Cold stress is a common problem

of rice cultivation, and is a crucial factor affecting global

food production. About 30.7 million ha of rice is grown in

China and extend over a wide area ranging from 53�270N to

18�900N. Almost the entire area can be affected by cold

injury resulting from low temperatures, and annual losses

are 3–5 million tonnes of rice grain (Li and Guo 1993).

Rice is a cold-sensitive plant that has its origin in tropical

or sub-tropical areas. Spikelet fertility of rice decreases

because the rapidly growing booting and reproductive

tissues are very sensitive to low temperatures, especially

at the stages ranging from pre-meiotic mother cells to

microspores and pollen (Nishiyama 1982; Dai et al. 2002).

Low temperatures at the booting stage cause degeneration

of young microspores, and hypertrophy and dissolution of

tapetal cells, interrupting or decreasing the supply of

nutrients from the anther walls to the pollens (Hayase et al.

1969; Nishiyama 1976; Satake 1989). Consequently, it is

imperative to screen for cold tolerance at this growth stage

and to understand the genetic and molecular basis of cold

tolerance.

Genetic analysis has shown that cold tolerance is a very

complex trait involving many genes. Futsuhara and

Toriyama (1966) showed that cold tolerance in the temperate
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japonica cultivar, Somewake, was controlled by four or

more loci and linked to morphological marker genes, d2

(dwarf) on chromosome 1, bc (brittle culm) on chromo-

some 3, Pr (purple hull) on chromosome 4, and gh (gla-

brous hull) and nl (neck leaf) on chromosome 5. Nishiyama

(1995) showed that two loci were involved in cold toler-

ance of the temperate japonica cv. Hayayuki. Our under-

standing of the genetic basis of complex quantitative traits

has been greatly enhanced by the recent development of

molecular markers. This has enabled the identification and

mapping on all rice chromosomes of many QTLs associ-

ated with cold tolerance at the booting stage over the last

decade. For example, Li et al. (1997) identified two QTLs

on chromosome 1 and one QTL on chromosome 12, using

a BC1F1 population. Takeuchi et al. (2001) identified three

QTLs on chromosomes 1, 7, and 11 using a doubled-hap-

loid (DH) population from a cross between tolerant-tem-

perate and sensitive-temperate japonica genotypes. Saito

et al. (2001) identified closely linked QTLs Ctb1 and Ctb2

on chromosome 4; these were related to cold tolerance and

anther length. Ctb1 was subsequently fine-mapped and

putative candidate genes were identified (Saito et al. 2004).

Liu et al. (2003) identified three QTLs on chromosomes 1,

6, and 7 in cold-tolerant wild rice introgression lines.

Andaya and Mackill (2003) identified nine QTLs on

chromosomes 1, 2, 3, 5, 6, 7, 9, and 12 using a set of

recombinant inbred lines derived from a cross between

temperate japonica cv. M-202 and tropical indica cv. IR50.

Dai et al. (2004) mapped nine QTLs using an F2 population

consisting of 250 individuals and four were validated using

the F3 population. Kuroki et al. (2007) detected a QTL on

the short arm of chromosome 8 and mapped it to a 193-kb

interval. Although QTLs for cold tolerance at the booting

stage have been mapped on all 12 chromosomes, only one

was narrowed down to a 100 kb region (Saito et al. 2004)

and none has been cloned.

Near-isogenic lines are excellent materials for fine

mapping and map-based cloning of the individual genetic

components of complex quantitative traits. Some QTLs in

rice were cloned by map-based cloning using NIL mate-

rials, such as Gn1a for grain number, qGY2-1 for grain

yield, qUVR-10 for ultraviolet-B (UVB) resistance, and

qSH1 for seed shattering (Ashikari et al. 2005; He et al.

2006; Ueda et al. 2005; Konishi et al. 2006, respectively).

Kunmingxiaobaigu (KMXBG), cultivated in Kunming,

Yunnan Province, for more than 300 years (Cheng 1993),

is one of the most low temperature-tolerant landraces at all

growth stages, whereas Towada is one of the least tolerant

varieties identified during collaborative studies between

Japan and China (Horisue et al. 1988). We developed a set

of cold-tolerant NILs by backcrossing KMXBG as donor to

Towada, and selecting cold-tolerant individuals in each

generation of backcrossing. In our previous study, one of

the cold-tolerant NILs was selected as a parent to construct

a segregating population, and eight QTLs were mapped on

chromosomes 1, 4, 5, 10, and 11 (Xu et al. 2008). Dai et al.

(2004) mapped QTL qRCT7 with major effect (20.6%) on

the long arm of chromosome 7 using F2 and F3 populations

generated from KMXBG 9 Towada. This QTL was not

detected in our previous study because the segment con-

taining qRCT7 was not present in the particular cold-tol-

erant NIL parent that was used (Xu et al. 2008).

In the present work, we studied another cold-tolerant

NIL, ZL1929-4, in which we detected and mapped a QTL

for cold tolerance with major effect at the booting stage on

the long arm of chromosome 7. By fine mapping and

cloning of cold-tolerance genes, we are trying to establish

functional roles for genes involved in cold tolerance and

ultimately to use those genes in breeding modern cold-

tolerant rice varieties.

Materials and methods

Plant materials

ZL1929-4 (hereafter, ZL1929) is a BC6F4 cold-tolerant

NIL developed by backcrossing KMXBG as donor to the

cold-sensitive Japanese commercial japonica cv. Towada,

and selecting cold-tolerant individuals in each generation

of backcrossing. Two F2 populations were used in fine-

mapping. One F2 population consisting of 204 plants,

derived from an F1 plant of ZL1929 9 Towada, was grown

at the experimental farm, Yunnan Academy of Agricultural

Sciences, Kunming (altitude 1,916 m), in the summer of

2007. The second and larger F2 population comprising

2,606 plants derived from the same cross was grown at the

China Agricultural University Experiment Station at Sanya

(18�N, 109�E), Hainan, in the winter of 2007. All F3

families derived from the smaller population, and F3

families derived from all recombinants identified in the

larger F2 population from Sanya, along with the parents,

were grown at Kunming, in the summer of 2008.

Evaluation of cold tolerance

Cold tolerance of ZL1929 and Towada

Plants of ZL1929 and Towada were individually harvested

after treatments at the booting stage in three different

environments, viz. Kunming (low temperature), Beijing

(low temperature), and Beijing (normal temperature),

respectively. Air temperature data were obtained from

public records and water temperatures were measured daily

by us. Starting from the differentiation of young panicles to

the milky mature stage, cold treatment in Kunming was
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applied by naturally low atmospheric temperatures of

18–21�C, and cold water at about 19.5�C provided to a

depth of 30 cm (Xu et al. 2008). ZL1929 and Towada were

grown at the China Agricultural University Experiment

Station in Beijing, where the daily mean atmospheric

temperatures were 25–31�C during the booting stage. The

cold treatment in Beijing was as follows: eight rice seed-

lings each of ZL1929 and Towada were transplanted in

plastic pots. Extra tillers were removed from each plant in

the pot, leaving four tillers of each plant to avoid over-

crowding and to promote better growth. Five healthy plants

per pot showing uniform development stage were selected

and one tiller each from the five plants was tagged. At the

microsporogenesis stage the plants were moved to a con-

trolled environment incubator maintained at 15 ± 0.5�C

for 7 days. Microsporogenesis was estimated by the dis-

tance between the auricles of the flag and penultimate

leaves. An interval of -4 (flag leaf auricle below the

penultimate leaf auricle) to ?2 cm (flag leaf auricle above

the penultimate leaf auricle) was the indicative of the

correct stage (Satake and Hayase 1970). As much as 13

cold tolerance-related traits (Zeng et al. 2006), including

plant height, panicle length, inter-node length below the

panicle, panicle neck length, flag leaf length, flag leaf

width, penultimate leaf length, penultimate leaf width, first

elongating inter-node length, full grains per panicle per

spike, blighted grains per panicle, total grains per panicle

and mean spikelet fertility, were evaluated. For each trait,

the mean phenotypic values of eight plants were compared

between ZL1929 and Towada. Spikelets of KMXBG,

ZL1929, and Towada were collected one day before

anthesis in Kunming. Pollen grains taken from anthers

were stained with 1% KI–I2 solution and examined by light

microscopy (Olympus IX71). Pollens with a round shape

and dark blue color were considered to be fertile; otherwise

they were recorded as sterile.

Cold tolerance of populations

Cold tolerances of the F2 population and F3 families were

evaluated at Kunming in the summers of 2007 and 2008,

respectively. Thirty-day-old seedlings were transplanted in

normally irrigated plots with 20 plants in a single row with

12.5 and 25-cm spacing between plants and rows, respec-

tively. In 2007, 204 random F2 plants and parental control

were planted in each plot. In 2008, each of the 204 F3

families and parental controls was represented by a row of

15–20 plants. The recombinant F3 families selected from

the larger F2 population were planted in plots of 30–40

plants. All plants flowered within 7 days. Cold treatments

of all F2 plants, F3 families, and parents were applied as

described above. The Kunming environment provided

sufficiently low temperatures for discrimination of cold-

tolerant and cold-sensitive parental genotypes. Cold toler-

ances of F2 plants were evaluated by the spikelet fertilities

of the main panicles at the seed ripening stage, and F3

families were evaluated as mean spikelet fertilities of the

main panicles from 10 to 15 plants in each line. Most of the

recombinant F2 plants were heterozygous, but homozygous

recombinant individuals were selected within the respec-

tive F3 families. Cold tolerances of recombinants were

evaluated as mean spikelet fertilities of the main panicles

from 8 to 10 selected homozygous plants in each family.

DNA extraction and molecular marker analysis

DNA was extracted from leaves following the CTAB method

described by Rogers and Bendich (1988) with minor modifi-

cations. A total of 647 SSR markers evenly distributed over all

12 chromosomes (mean marker interval 2.4 cM, entire gen-

ome 1,526.8 cM) (International Rice Genome Sequencing

Project, 2005) were used to examine polymorphisms among

KMXBG, the NIL (ZL1929), and Towada parents (Temnykh

et al. 2000; McCouch et al. 1988, 2002). When PCR products

had the same band size for KMXBG and ZL1929, but were

different from Towada, it was assumed that the SSR marker

was potentially linked to a cold-tolerance locus. These

markers were validated in a one-way ANOVA. Additional

SSR markers located near the polymorphic SSR markers were

chosen from the Gramene database (http://www.gramene.org)

and used to detect further polymorphisms between the parents.

All SSR markers showing polymorphisms were used to

genotype the entire 204 random F2 population. Recombinant

plants in the large F2 population were identified by using the

two markers RM182 and RM1132 flanking the putative QTL.

Homozygous recombinants were detected among individuals

in each recombinant F3 family using the same markers.

Molecular markers within the flanked region were screened to

detect polymorphisms that would permit further genotyping

of the recombinant lines. The markers included SSR (Inter-

national Rice Genome Sequencing Project 2005) and one

intron length polymorphism marker (Wang et al. 2005). The

PCR and electrophoretic methods were described by Xu et al.

(2008).

Data analysis

Linkage map construction was performed using

Mapmaker/Exp 3.0 (Lincoln et al. 1992), and the Kosambi

function was used to convert recombination values to

genetic distances. QTL analysis was carried out by interval

analysis with Map Manager QTXb20 (Manly et al. 2001).

A LOD score of 3.0 was used as threshold to declare the

presence of a putative QTL. The percentage variation

explained (general contribution) by each QTL, and the

additive and dominance effects were estimated.
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The mean values of cold-related trait differences

between ZL1929 and Towada were compared by T tests

using the statistical program SPSS for Windows, version

11.0 (SPSS Inc. 2002). In each recombinant family, the

mean phenotypic value for spikelet fertilities of the main

panicles for homozygous recombinant individuals were

compared with those of the ZL1929 and Towada controls

using the SAS statistical software package (SAS Institute

2000). Recombinant lines were grouped based on the

genotypes of the homozygous recombinants they contained

and the mean phenotypic value of spikelet fertilities of the

main panicles. In fine mapping of the position of qCTB7, a

recurrent substitution mapping strategy as described by

Paterson et al. (1990) was used.

Results

Characterization of the ZL1929 NIL

Phenotypic evaluations and comparisons of cold tolerance-

related traits for ZL1929 and Towada using data collected

in Kunming and Beijing are shown in Table 1. Under

normal temperature conditions in Beijing, there were no

significant differences in all investigated traits between

ZL1929 and Towada. Under the two cold treatment

regimes, there were no significant differences except for

four grain-related traits, viz. full grains per panicle,

blighted grains per panicle, total grains per panicle, and

mean spikelet fertility (Table 1; Fig. 1). Pollen fertility for

Towada (25%) was much lower than that for ZL1929

(80%) and KMXBG (nearly 100%) in Kunming (Fig. 1).

These results indicated that ZL1929 was very similar to

Towada except for the traits associated with spikelet fer-

tility of main panicle. The effects of other cold-related

traits on spikelet fertility were eliminated in the genetic

background of near-isogenic line ZL1929. Thus, spikelet

fertility was an appropriate index to evaluate cold tolerance

at the booting stage in the ZL1929 9 Towada segregating

population.

One-way analysis of variance (ANOVA) and interval

mapping for cold tolerance

A total of 183 (28.3%) out of the 647 markers were

polymorphic between KMXBG and Towada. The per-

centage of polymorphism ranged from 23.2 (chromosome

5) to 32.3% (chromosome 11). The polymorphism fre-

quency was much lower than that of a japonica 9 indica

cross studied by Andaya and Mackill (2003). Nine SSR

markers, viz. RM81A on chromosome 1, RM1221 on

chromosome 3, RM3608, RM7237, and RM6432 on

chromosome 7, RM331 on chromosome 8, RM409 and

RM215 on chromosome 9, and RM552 on chromosome

11, showing clear polymorphisms between ZL1929 and

Towada, were used to screen the 204 random F2 plants

from ZL1929 9 Towada.

One-way ANOVA of the relationship between the SSR

markers and spikelet fertility showed that RM3608,

RM7237, and RM6432 on long arm of chromosome 7 were

significantly associated with spikelet fertility (P \ 0.005),

whereas the other six markers were not significantly

Table 1 Comparisons of cold tolerance-related traits between ZL1929 and Towada under different treatment conditions in Kunming and Beijing

at the booting stage

Trait Kunming (LT) Beijing (LT) Beijing (NT)

Towada ZL1929 Towada ZL1929 Towada ZL1929

Plant height (cm) 70.3 72.6 92.5 89.2 104 102.2

Panicle length (cm) 16.5 16.9 16.7 16.2 18.4 21.3

Inter-node length below the panicle(cm) 27.2 29.0 30.9 27.6 35.3 36.1

Panicle neck length (cm) 4.8 5.7 2.3 2.5 8.2 7.9

Flag leaf length (cm) 23.6 26.6 29.2 30.3 27.9 33.2

Flag leaf width (cm) 1.47 1.38 1.40 1.50 1.40 1.62

Penultimate leaf length (cm) 29.7 33.6 48.7 48.2 39.2 47.7

Penultimate leaf width (cm) 1.30 1.24 1.25 1.33 1.24 1.52

First elongating inter-node length (cm) 2.57 2.88 2.75 3.03 4.13 4.58

Full grains per panicle per spike 30.7 60.2* 16.0 53.0* 126.8 135.8

Blighted grains per panicle 74.7 35.8* 53.5 40.7* 8.2 14.8

Total grains per panicle 105.3 96.0 69.5 93.7* 135 150.6

Mean spikelet fertility (%) 30.4 60.7* 22.5 57.4* 93.9 90.2

LT low temperature, NT normal temperature

* Trait means of ZL1929 and Towada in the same treatment are significantly different (P \ 0.01)
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associated with it. Interactions among the nine polymor-

phic markers showed no significant association with cold

tolerance in the F2 population. The results thus indicated

that the three chromosome 7 markers were linked to

spikelet fertility of the main panicle under cold stress. Five

additional polymorphic SSR markers near the linked

markers were used to genotype the 204 F2 individuals

(Fig. 2a). QTL analysis of mean spikelet fertility of the

main panicles revealed a significant peak between mark-

ers RM182 and RM1132 with a LRS score of 35.8

(LOD = 7.74), and explaining 9% of the phenotypic

variance. KMXBG-derived allele contributed an increasing

effect on mean spikelet fertility of the main panicles. We

designated the locus qCTB7. QTL analysis of the F3 family

data further confirmed the unique QTL peak between

markers RM182 and RM1132 with a LRS score of 51.5

(LOD = 11.2), the QTL accounting for 21% of the phe-

notypic variance (Table 2). The above results demonstrated

that qCTB7 was responsible for mean spikelet fertility of

the main panicles under cold treatment in ZL1929. It

appeared that qCTB7 was a stable locus and amenable to

fine mapping and eventual cloning.

Fine mapping of qCTB7

To further refine the position of qCTB7, the larger F2

population was subjected to molecular analysis. Among the

2,810 F2 plants (plus the previous 204 plants), a total of 63

recombinants between markers RM182 and RM1132 were

detected (Fig. 2b). These recombinants were genotyped

with three SSR markers, RM21862, RM21868, and

RM21870, and one intron length polymorphism marker

identified within the interval RM182–RM1132 (Fig. 2c, d).

In each of the 63 recombinant families, homozygous

recombinant individuals identified with the appropriate

markers were evaluated for mean spikelet fertilities of the

main panicles and the mean phenotypic value of each trait

for each recombinant F3 family was compared to those of

ZL1929 and Towada. As much as 12 genotypic groups

were identified (Fig. 2c). Group A1 contained 17 recom-

binants between RM182 and RM6432; all were signifi-

cantly different (P \ 0.001) from Towada in spikelet

fertility, but were not different from ZL1929. The reci-

procal A2 group of 12 recombinant families for the same

region differed significantly from ZL1929, but not from

Towada. Thus, the A group confined qCTB7 to a region

downstream of RM182. Using the same procedure, the B

and C groups restricted qCTB7 to a region downstream of

RM6432 and RM5623, respectively, and the F groups

placed the QTL upstream of RM1132. The most important

groups, D1 and D2, identical in genotype between markers

RM7237 and RM5508, but with allelic orientations for

spikelet fertilities reversed relative to the parents ZL1929

and Towada; group D1 was significantly different from

Towada, whereas group D2 was not different. The rela-

tionships for ZL1929 were the opposite. Thus, qCTB7 was

located in the region between markers RM7237 and

RM5508. This conclusion was further confirmed by the

Fig. 1 Fertilities of KMXBG,

ZL1929, and Towada under

cold treatment condition at the

booting stage in Kunming.

a Pollen fertilities of KMXBG

(upper panel), ZL1929 (middle
panel), and Towada (lower
panel). Scale bars 50 lm.

b Spikelet fertilities of KMXBG

(left panel), ZL1929 (middle
panel), and Towada (right
panel)
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groups E, where results similar to those described for

groups D were obtained in regard to E1 and E2.

For a more precise determination of the QTL location,

four further markers were developed to subdivide the

interval RM7237–RM5508; this permitted 13 recombinants

to be further genotyped as above (Fig. 2d). The recombi-

nant CL56 placed qCTB7 in a region downstream of

RM7237, recombinants CL253, CL218, and CL195 placed

qCTB7 in a region upstream of RM5508, recombinant

CL51 placed it in a region upstream of RM21870, and

CL86, CL95, and CL259 placed it upstream of RM21868.

The most informative recombinants were CL27, CL118,

CL64, CL53, and CL50 with identical genotypes between

markers RI02905 and RM21862. Recombinants CL64 and

CL53 were significantly different from ZL1929 in spikelet

fertility, and not different from Towada, whereas recom-

binants CL27, CL118, and CL50 showed the reverse

relationship. Thus, qCTB7 must reside in the interval

Fig. 2 Fine mapping of qCTB7
by a two-step substitution

strategy a The genetic linkage

map (in cM) of qCTB7 region

on chromosome 7 based on 204

F2 plants. Numbers below the

line indicate genetic distance

between adjacent markers.

b High-resolution linkage map

of the qCTB7 region produced

with 2,810 F2 plants. The

number of recombinants

between adjacent markers is

indicated under the linkage

map. c Progeny testing of

homozygous recombinants

delimited the qCTB7 locus to

the region between markers

RM7237 and RM5508. The 63

recombinants were grouped into

12 groups based on genotypes.

The numbers of recombinants in

each group and phenotypic

difference of each group from

the controls ZL1929 and

Towada for mean spikelet

fertility are shown on the right.

d Fine mapping of qCTB7. The

13 recombinants between

markers RM7237 and RM5508

are listed on the left. Phenotypic

differences of each recombinant

family from the controls

ZL1929 and Towada for mean

spikelet fertility are listed on the

right. An ‘‘a’’ following the

phenotypic value indicates that

the mean phenotypic value of

recombinant was not

significantly different from that

of ZL1929 at P \ 0.001; a ‘‘b’’

indicates that the mean

phenotypic value of

recombinant was not

significantly different from that

of Towada

900 Theor Appl Genet (2010) 121:895–905

123



RI02905–RM21862. This 92-kb region is spanned by BAC

clone AP003804 (Fig. 2d).

Candidate genes in the 92-kb target region

Based on the available rice genome sequence and annotation

databases (NCBI: http://www.ncbi.nlm.nih.gov/mapview/

maps.cgi?taxid=4530&chr=7; TIGR: http://rice.plantbiology.

msu.edu/), we found the accurate physical locations of

RI02905 and RM21862 on chromosome 7. There were 12

putative genes in the 92-kb target region of the Japonica rice

genome (cultivar: Nipponbare). This region is entirely

covered by the BAC clone AP003804 (Table 3). Full-length

cDNAs or ESTs corresponding to all, except Os07g0576100,

were available. Ten genes (other than Os07g0576100, Os07g-

0577400) showed hits to ESTs expressed in reproductive tissue.

Discussion

Effect of cold stress at the booting stage

The reproductive stage includes the two most cold-sensi-

tive stages, the booting stage (Microsporogenesis) and the

flowering stage (anthesis) (Dai et al. 2002). The critical

temperature for cold stress at booting (17–20�C) is

higher than at flowering (15–17�C) (Li and Guo 1993). In

the present study, the natural field conditions during the

reproductive stage (19.5�C) in Kunming were within the

critical cold temperature range for booting stage injury.

Pollen fertility observations revealed that cold injury had

occurred before anthesis. In addition, cold treatments in

Beijing were conducted only at booting, and give the

similar spikelet fertilities to Kunming (Table 1). These

results indicated that spikelet sterility in Kunming was

mainly caused by cold stress at the booting stage. Zeng

et al. (2006) reported that plant height, panicle length, and

10 other traits were associated with cold tolerance and

spikelet fertility during cold stress in a Yunnan rice core

collection. Similar results were obtained by Suh et al.

(2009). In the present study, we used near-isogenic lines

and only the spikelet fertility traits of cold-tolerant ZL1929

were significantly different from the cold-sensitive Towada

(Table 1). This indicated that the cold-tolerance QTL/gene

in ZL1929 had a direct effect on spikelet fertility. More-

over, the total grains per panicle for Towada (69.5) were

much lower than that for ZL1929 (93.7) under the cold

treatment condition in Beijing (cold temperature), and very

Table 2 QTL analyses of spikelet fertility of the main panicle in the F2 and F3 generations of ZL1929 9 Towada

Population Interval LRS LODa Phenotypic varianceb (%) Addc (%) Domd (%)

F2 RM182–RM1132 35.8 7.74 9 6 4

F3 RM182–RM1132 51.5 11.2 21 12 3

a Likelihood ratio statistic (LRS) value was divided by 4.6 to obtain the equivalent logarithm of the odds (LOD) score (Manly et al. 2001)
b Phenotypic variance explained by the QTL
c Additive effect associated with KMXBG
d Dominance effect associated with KMXBG

Table 3 Candidate genes in the qCTB7 region

ORF Putative protein function Full-length

cDNA

Number

of exons

Gene

size (bp)

ESTs source tissues EST number

Os07g0575800 Hydrolase AK060302 7 1,146 Leaf, panicle, stem 14

Os07g0575900 DUF946 family protein AK105640 1 1,653 Leaf, panicle, callus, stem, root, seed 56

Os07g0576000 Prenyltransferase AK102382 11 981 Leaf, panicle, stem, flower, callus 52

Os07g0576100 OsGH3.10, GH3 homolog – 3 1,437 – 0

Os07g0576500 OsGH3.9, GH3 homolog AK106839 1 1,326 Panicle 1

Os07g0576600 Hypothetical protein – 3 732 Panicle 2

Os07g0577300 Glycoside hydrolase AK242837 5 1,497 Callus, flower, seed, panicle 31

Os07g0577400 Ubiquitin-conjugating enzyme E2 AK111080 4 609 Leaf 2

Os07g0577500 Conserved hypothetical protein AK100831 1 1,062 Leaf, panicle, stem, flower, callus 16

Os07g0577600 Lhca2 protein AK119176 5 792 Stem, leaf, panicle, root, flower, callus, seed 1,051

Os07g0577700 Succinyl-CoA ligase AK243282 7 996 Panicle, leaf, callus, stem, root, flower 90

Os07g0577900 Target SNARE coiled-coil region

domain containing protein

AK062833 4 1,101 Root, flower, stem 8

Data from http://www.ncbi.nlm.nih.gov/sites/entrez
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different from those recorded at Kunming under cold

temperatures and Beijing under normal temperatures. This

indicated that critical low temperatures with short days at

the booting stage not only affect spikelet fertile, but also

spikelet development.

qCTB7 is a stable cold-tolerance locus

In earlier studies, Takeuchi et al. (2001) detected the QTL

qCT-7 between S1563 and W146 on chromosome 7 using a

doubled-haploid (DH) population from a cross between

tolerant-temperate and sensitive-temperate japonica varie-

ties. Dai et al. (2004) detected the QTL qRCT7 between

RM182 and R1789 on chromosome 7 using an F2 popu-

lation consisting of 250 individuals of a cross between

KMXBG and Towada. In this study, we mapped QTL

qCTB7 for cold tolerance on the long arm of chromosome

7, explaining 9 and 21% of the phenotypic variance in

the F2 and F3 generations, respectively, and fine mapped

its location to a 92-kb interval between markers RI02905

and RM21862. The genetic and physical locations of

these markers (http://www.gramene.org/markers/index.html)

indicate that qCTB7, qRCT7, and qCT-7 may be the same

locus. The three QTLs were detected in different genetic

backgrounds and environments, but the phenotypic vari-

ances explained at 21, 20.6, and 22.1%, respectively, were

quite similar. Cold tolerance at the booting stage in a

Yunnan rice core collection was significantly associated

(P \ 0.005) with molecular marker RM7237 (unpublished

data) indicating that the effect of the locus is stable in

different genetic backgrounds and is likely a major effect

QTL. It is also possible that the cold-tolerance allele at this

locus may be conserved in rice evolution and act as a

physiological switch in response to cold stress. In our

former studies (Xu et al. 2008), in order to escape the

hybrid sterility that is common in inter-subspecies rice

crosses, but to ensure a distant geographical relationship,

we developed cold-tolerant NILs using Japonica cultivars

from Yunnan and Japan. The polymorphism frequency

between Towada and KMXBG was much lower than that

of the japonica 9 indica cross analyzed by Andaya and

Mackill (2003). Although there were five recombinant lines

between RI02905 and RM21862, we could not find poly-

morphic molecular markers in the 92-kb interval.

Analysis of possible candidate genes

No major cold-tolerance gene effective at the booting stage

had been reported previously (Saito et al. 2004; Xu et al.

2008). We searched for candidate genes for qCTB7 using the

available sequence annotation database (http://www.

ncbi.nlm.nih.gov/; http://rice.plantbiology.meu.edu/). Of

12 genes in the target region of the cultivated rice

Nipponbare genome (Table 3), five could be related to

response to cold or other stress responses, and were therefore

the more likely candidates. These included two auxin

response genes, Os07g0576100 and Os07g0576500, two

hydrolase genes Os07g0575800 and Os07g0577300, and

one ubiquitin-conjugating enzyme E2 gene Os07g0577400.

The phytohormone auxin plays a central role in almost

every aspect of plant growth and development and several

auxin-responsive genes have been implicated in both biotic

(e.g. pathogen infection (Ding et al. 2008)) and abiotic

stress responses (e.g. desiccation, low temperature, and

salinity (Hannah et al. 2005; Jain and Khurana 2009; Song

et al. 2009)). Primary auxin response genes, which are

categorized in three major classes, viz. auxin/indole-3-

acetic acid (Aux/IAA), GH3, and small auxin-up RNA

(SAUR) (Guilfoyle 1999), induce very rapid transcript

accumulations of a large number of genes. We found two

GH3 homologs, Os07g0576100 and Os07g0576500, that

are putative indole-3-acetic acid-amido synthetases named

OsGH3.10 and OsGH3.9, respectively (Jain et al. 2006), in

the qCTB7 region. Members of the GH3 gene family

encode enzymes that adenylate indole 3-acetic acid (IAA)

to form amino acid conjugates, thereby preventing the

accumulation of excessive free auxin, and are involved in

auxin homeostasis (Staswick et al. 2005). In addition, GH3

enzymes catalyze amido conjugation to salicylic acid and

jasmonic acid (Staswick et al. 2002). Twelve members of

the GH3 gene family were identified in rice using

sequences of full-length cDNA clones available from

KOME and analysis of the whole genome sequence of rice.

Tos17 insertion mutants of rice GH3 genes, OsGH3.5 and

OsGH3.7, showed low fertility or sterile phenotypes (Jain

et al. 2006). ESTs of Os07g0576500 (OsGH3.9) were

reported to express in panicles and no EST was recorded

for Os07g0576100 (OsGH3.10) (Table 3). Os07g0576100

(OsGH3.10) and Os07g0576500 (OsGH3.9) are considered

a sister pair and to represent a local duplication event. It is

therefore possible that Os07g0576500 (OsGH3.9) plays an

important role in cold tolerance at the booting stage.

Os07g0575800 and Os07g0577300 are putative and

expressed glycosyl hydrolase (glucan endo-1,3-beta-

glucosidase) genes; b-glucosidases (E.C. 3.2.1.21) are

ubiquitous. Glucosylation (reversible by the appropriate

glucosidase) can affect various characteristics of the

glucosylated moiety (the aglycone), including reactivity,

solubility, and transport (Li et al. 2001). Many roles for

glucosidases in plants have been postulated (reviewed in

Esen 1993); some are capable of affecting cell wall prop-

erties (Gerardi et al. 2001; Li et al. 2001), which could be a

crucial function in protecting cells from the physical

deformations associated with freezing. In stress responses,

b-glucosidases commonly release active molecules from

inert precursors. The various released molecules include a
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variety of antimicrobials (Cicek and Esen 1998; Sue et al.

2000), phytohormones (Brzobohaty et al. 1993), and at

least one antioxidant (Chong et al. 2002). Stress-related

roles were also suggested for several b-glucosidases of

unknown function on the basis of their stress-responsive

expressions (Chen et al. 2002; Thorlby et al. 2004; Spano

et al. 2005).

Os07g0577400 is considered to be ubiquitin-conjugating

enzyme E2, and may take part in cellular responses to

stress. Ubiquitination also plays a crucial role in responses

to cold (Ishitani et al. 1998; Dong et al. 2006). Recently,

Zhou et al. (2010) reported that overexpression of a

soybean ubiquitin-conjugating enzyme gene GmUBC2

enhanced drought and salt tolerance through modulating

abiotic stress-responsive gene expression in Arabidopsis.

Potential exploitation in rice cold-tolerance

improvement

Cold tolerance in rice is a major distinguishing factor in

classifying the two major subspecies of Oryza sativa, japon-

ica, and indica (Glaszmann et al. 1990). The indicas are more

sensitive to cold stress than the japonicas. Japonicas could be

used for cold-tolerance improvement and to diversify indica

germplasm. Fine mapping of qCTB7 on chromosome 7 thus

provides useful information for cold-tolerance breeding per-

mitting large-scale and precise screening for cold-tolerant

genotypes by marker-assisted selection. In further studies, we

will validate these candidate genes by sequence analysis of

parental lines, including the coding and promoter regions, and

carry out gene expression analyses using reproductive tissues

of cold-treated parental plants at the booting stage. The most

promising candidate genes will be utilized in genetic trans-

formation and functional analyses.
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